Crystal and Molecular Structure of 1,1'-Azo-2-phenylimidazo[1,2-a]pyridinium Dibromide: a New Curariform Agent

By D. J. Pointer* and J. B. Wilford, Department of Chemistry, Teesside Polytechnic, Borough Road, Middlesbrough, Teesside TS1 3BA

Abstract

The structure of the title compound, a powerful selective, neuromuscular blocking agent has been determined by a three-dimensional X-ray analysis. Crystals are monoclinic, space-group $P 2_{1} / c$, with lattice parameters $a=9 \cdot 15(1)$, $b=12.05(1), c=12.61(1) \AA, \beta=121.90(3)^{\circ}$, and $Z=2$. The structure was solved by the heavy-atom method and refined by least-squares calculations to $R 0 \cdot 112$ for 1698 reflections. The molecule consists of two identical halves joined by a 2 -tetrazene link across a centre of symmetry. Phenyl rings are inclined at $47 \cdot 5^{\circ}$ to the rest of the molecule.

THE belief ${ }^{1}$ that an interquaternary distance of $12.5 \AA$ is necessary for optimum neuromuscular blocking activity has been refuted by X-ray studies on the potent steroid derivative pancuronium bromide ${ }^{2}$ where the measured distance is $11.08 \AA$, and the estimated distance of $9.7 \AA$ in the similarly active compound diallylbis(nortoxiferine). Chemical studies on (+)-tubocurarine ${ }^{3}$ have shown this to be a monoquaternary compound, as is the recently reported steroid derivative conessine ethoiodide (stercuronium). ${ }^{4}$ That some conformational requirement may be necessary for effective neuromuscular blockade is suggested by the X-ray structure of acetylcholine ${ }^{5}$ where the $\stackrel{+}{\mathrm{N}}-\mathrm{C}-\mathrm{C}-\mathrm{O}-$ grouping is synclinal (gauche), the conformation held by twelve other related molecules which have been studied crystallographically. ${ }^{6}$ Some of these molecules participate in cholinergic transmission systems. N.m.r. studies on acetylcholine bromide in aqueous $\left(\mathrm{D}_{2} \mathrm{O}\right)$ solutions ${ }^{7}$ show that this conformation is still held in solution.
The title compound is one of a new class of bisquaternary compounds ${ }^{8}$ which possess potent, selective, short-acting curariform activity in several species. ${ }^{9}$ Some conclusions drawn from the present X-ray study have been published. ${ }^{10}$

EXPERIMENTAL

Crystals prepared by the method of ref. 8 were recrystallised from water, m.p. 253-255 ${ }^{\circ}$ (decomp.).

Crystal Data.- $\left[\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{6}{ }^{2+}\right] 2 \mathrm{Br}^{-}, \quad M=576 \cdot 3$. Monoclinic, $a=9.15(1), \quad b=12.05(1), \quad c=12 \cdot 61(1) \AA, \dagger \quad \beta=$ $121.90(3)^{\circ}, U=1180(3) \AA^{3}, D_{\mathrm{c}}=1.62, Z=2, D_{\mathrm{m}}=1.63$ (by flotation), $F(000)=576 . \quad \mu=51 \cdot 0 \mathrm{~cm}^{-1}$ for $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14).
Single crystal Weissenberg equi-inclination photographs, and the multiple-film technique were used for data collection. Crystals smaller than the optimum size (0.4 mm) were used, and no corrections for absorption were applied. The intensities of 1424 reflections were estimated visually

[^0]from layers $h k 0-9$ and corrected for Lorentz and polarisation factors. The intensities of 896 reflections were likewise visually estimated from layers $h^{\prime} 0-5 l^{\prime}$, the axis of rotation being b^{\prime} in the related P_{1} / n unit cell, where $a^{\prime}=a, \quad b^{\prime}=b, \quad c=11.00(1) \AA, \beta^{\prime}=102.85(3)^{\circ}$. These intensities, after correction, were re-indexed by use of the transformation $h=-h^{\prime}, k=k^{\prime}, l=h^{\prime}+l^{\prime}$ to conform to the $\mathrm{P} 2_{1} / c$ cell. Layer scale values were obtained by direct comparison of common reflections from the two sets, which were then merged affording 1698 independent reflections, having a merging R factor [$\Sigma\left(F_{i}-F_{\text {mean }}\right) / \Sigma F_{\text {mean }}$] of $0 \cdot 169$.

The position of the bromide ion was easily found from a three-dimensional Patterson function. An electron-density synthesis phased on this atom, and with 124 poorly phased reflections omitted, revealed the other atom positions. A few spurious peaks, possibly water molecules, were eliminated by full-matrix least-squares refinement with isotropic temperature factors, after which R was $0 \cdot 16$. When all atoms were given anisotropic temperature factors, further refinement reduced R to $0 \cdot 112$. A weighting scheme $1 / w=1+\left[F_{\mathrm{o}}-a / b\right]^{2}$ with $a=1000$ and $b=1250$ was included in all but the initial cycles of refinement.
The absence of any suitable sites for solvent molecules was demonstrated by a Fourier programme ${ }^{11}$ and a differ-ence-Fourier map did not indicate any chemically reasonable positions for the hydrogen atoms. Each hydrogen atom was positioned on the median line through its bonded carbon atom and in the plane of this carbon atom and its two linked neighbours, assuming C-H $1.08 \AA$.

RESULTS AND DISCUSSION

The final atomic co-ordinates together with their standard deviations are listed in Table 1 and the interatomic distances and valency angles calculated from these co-ordinates are in Table $2 . \ddagger$ Table 3 lists the anisotropic temperature factors. The atomic numbering scheme is shown in Figure 1 and the hydrogen atoms are numbered as the atoms to which they are attached.

[^1]Table 1
Fractional atomic co-ordinates with their estimated standard deviations in parentheses

Atom	x	y	z
Br	0.4769(2)	0.0427(1)	$0 \cdot 1925(1)$
$\mathrm{N}(1)$	$0 \cdot 8910$ (13)	$0 \cdot 1237(8)$	$0 \cdot 4535(10)$
C(2)	$0 \cdot 8936(15)$	$0 \cdot 2237$ (10)	$0 \cdot 3955(11)$
C(3)	$0 \cdot 7853(16)$	$0 \cdot 2933$ (12)	0.4027(12)
N(4)	$0 \cdot 7168(12)$	0-2386(8)	$0 \cdot 4658(9)$
C(5)	$0 \cdot 6061(16)$	$0 \cdot 2804(12)$	0.4966(13)
C(6)	$0 \cdot 5582(16)$	$0 \cdot 2130(11)$	$0.5599(13)$
C(7)	$0 \cdot 6227(16)$	$0 \cdot 1038(11)$	$0.5938(12)$
C(8)	$0.7368(16)$	$0 \cdot 0635(10)$	$0 \cdot 5613(12)$
C(9)	$0 \cdot 7828(15)$	$0 \cdot 1328(11)$	$0 \cdot 4955(11)$
$\mathrm{N}(10)$	1-0069(12)	$0 \cdot 0404(8)$	$0 \cdot 4719(9)$
C(11)	$0.9979(16)$	$0.2412(10)$	$0 \cdot 3400$ (12)
$\mathrm{C}(12)$	1-0940(17)	$0 \cdot 3387(12)$	$0 \cdot 3698(15)$
C(13)	1-1916(19)	$0 \cdot 3601(16)$	$0 \cdot 3140(17)$
C (14)	1-2019(18)	$0 \cdot 2800$ (16)	$0 \cdot 2414(16)$
$\mathrm{C}(15)$	1-1066(20)	$0 \cdot 1804(15)$	$0 \cdot 2103(15)$
C(16)	$1 \cdot 0030(19)$	0.1612(12)	$0 \cdot 2611(14)$

TAble 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

(a) Bonded distances			
$\mathrm{N}(1)-\mathrm{C}(2)$	$1 \cdot 416(17)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 395(20)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1 \cdot 352(18)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 390(19)$
$\mathrm{N}(1)-\mathrm{N}(10)$	$1 \cdot 388(16)$	$\mathrm{N}(10)-\mathrm{N}\left(10^{\prime}\right)$	$1 \cdot 249(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 338(20)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 395(21)$
$\mathrm{C}(2)-\mathrm{C}(11)$	$1 \cdot 467(19)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1 \cdot 403(22)$
$\mathrm{C}(3)-\mathrm{N}(4)$	$1 \cdot 410(19)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 423(25)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1 \cdot 357(19)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 367(27)$
$\mathrm{N}(4)-\mathrm{C}(9)$	$1 \cdot 375(18)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 411(26)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 363(21)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 415(25)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 413(21)$		
$(b) \mathrm{Interbond}$ angles			
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	$110 \cdot 4(1 \cdot 1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118 \cdot 4(1 \cdot 3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{N}(10)$	$118 \cdot 8(1 \cdot 1)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{N}(4)$	$106 \cdot 0(1 \cdot 1)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{N}(10)$	$130 \cdot 3(1 \cdot 1)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$134 \cdot 5(1 \cdot 3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$106 \cdot 4(1 \cdot 2)$	$\mathrm{N}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$119 \cdot 5(1 \cdot 2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$124 \cdot 2(1 \cdot 2)$	$\mathrm{N}(1)-\mathrm{N}(10)-\mathrm{N}\left(10^{\prime}\right) 111 \cdot 1(1 \cdot 0)$	
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	$129 \cdot 4(1 \cdot 3)$	$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$117 \cdot 9(1 \cdot 3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$108 \cdot 1(1 \cdot 2)$	$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(16)$	$120 \cdot 9(1 \cdot 3)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$127.5(1 \cdot 2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$121 \cdot 2(1 \cdot 4)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(9)$	$109 \cdot 0(1 \cdot 1)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119 \cdot 3(1 \cdot 5)$
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(9)$	$123 \cdot 5(1 \cdot 2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119 \cdot 1(1 \cdot 7)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$117 \cdot 8(1 \cdot 3)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$122 \cdot 3(1 \cdot 8)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121 \cdot 3(1 \cdot 4)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$118 \cdot 5(1 \cdot 6)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119 \cdot 6(1 \cdot 3)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$119 \cdot 3(1 \cdot 5)$

(c) Some intramolecular non-bonded distances

$\mathrm{N}(1) \cdots \mathrm{N}(4)$	$2 \cdot 179(16)$	$\mathrm{N}(4) \cdots \mathrm{N}(10)$	$\mathbf{3 . 5 4 2 (1 6)}$
$\mathrm{N}(1) \cdots \mathrm{N}\left(10^{\prime}\right)$	$2 \cdot 177(16)$	$\mathrm{N}(4) \cdots \mathrm{N}\left(10^{\prime}\right)$	$4 \cdot 027(16)$
$\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right)$	$3 \cdot 430(16)$	$\mathrm{N}(4) \cdots \mathrm{N}\left(1^{\prime}\right)$	$5 \cdot 396(16)$
$\mathrm{N}(1) \cdots \mathrm{N}\left(4^{\prime}\right)$	$5 \cdot 396(16)$	$\mathrm{N}(4) \cdots \mathrm{N}\left(4^{\prime}\right)$	$\mathbf{7 . 4 8 1 (1 6)}$

(d) Intermolecular non-bonded distances

$\mathrm{Br} \cdots \mathrm{N}(1)$	$3 \cdot 600$	$\mathrm{Br} \cdots \mathrm{C}\left(13^{\text {III }}\right)$	5.293
$\mathrm{Br} \cdots \mathrm{C}(2)$	3.941	$\mathrm{Br} \cdots \mathrm{C}\left(14{ }^{\text {III }}\right)$	$4 \cdot 066$
$\mathrm{Br} \cdots \mathrm{C}(3)$	$4 \cdot 026$	$\mathrm{Br} \cdots \mathrm{C}\left(15^{\text {IIII }}\right)$	$3 \cdot 886$
$\mathrm{Br} \cdots \mathrm{N}(4)$	$3 \cdot 779$	$\mathrm{Br} \cdots \mathrm{C}\left(6^{\text {rV }}\right.$)	4.517
$\mathrm{Br} \cdots \mathrm{C}(5)$	4.417	$\mathrm{Br} \cdots \mathrm{C}\left(7^{\mathbf{I V}}\right)$	$3 \cdot 716$
$\mathrm{Br} \cdots \mathrm{C}(6)$	$4 \cdot 752$	$\mathrm{Br} \cdots \mathrm{Br}^{\text {v }}$	$6 \cdot 159$
$\mathrm{Br} \cdots \mathrm{C}(7)$	$4 \cdot 560$	$\mathrm{Br}^{\mathbf{V}} \cdots \mathrm{C}\left(6^{\mathbf{I}}\right)$	$4 \cdot 517$
$\mathrm{Br} \cdots \mathrm{C}(8)$	3.957	$\mathrm{Br}^{\mathbf{v}} \cdots \mathrm{C}\left(7^{\mathbf{I}}\right)$	$3 \cdot 716$
$\mathrm{Br} \cdots \mathrm{C}\left(5{ }^{\mathrm{I}}\right)$	3.890	$\mathrm{Br}^{\mathbf{v}} \cdots \mathrm{C}\left(8^{\mathbf{I}}\right)$	$4 \cdot 639$
$\mathrm{Br} \cdots \mathrm{C}\left(6^{\mathbf{I}}\right)$	$3 \cdot 652$	$\mathrm{Br}^{\mathrm{V}} \ldots \mathrm{C}\left(13^{\text {III }}\right)$	3.782
$\mathrm{Br} \cdots \mathrm{C}\left(3^{\text {II }}\right)$	$3 \cdot 630$	$\mathrm{Br}^{\mathrm{V}} \cdots \mathrm{C}\left(14{ }^{\text {III }}\right)$	4.094
$\mathrm{Br} \cdots \mathrm{C}\left(5^{\text {II }}\right)$	3.786		

Roman numerals refer to equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{lr}
\text { I } x, \frac{1}{2}-y, z-\frac{1}{2} & \text { IV } 1-x,-y, 1-z \\
\text { II } 1-x, y-\frac{1}{2}, \frac{1}{2}-z & \text { V } 1-x, y+\frac{1}{2}, \frac{1}{2}-z \\
\text { III } x-1, y, z
\end{array}
$$

TAble 3
Anisotropic temperature factors $\left(\AA^{2}\right) *$

	$10^{3} U_{11}$	$10^{3} U_{22}$	$10^{3} U_{33}$	$\begin{gathered} 2 \times 10^{3} \\ U_{12} \end{gathered}$	$\begin{gathered} 2 \times 10^{3} \\ U_{32} \end{gathered}$	$\begin{gathered} 2 \times 10^{3} \\ U_{13} \end{gathered}$
Br	63(1)	45(1)	67(1)	$-19(1)$	-10(1)	87(1)
N(1)	$51(5)$	$38(5)$	47(6)	18(9)	11(9)	65(10)
$\mathrm{C}(2)$	$39(6)$	34(6)	42(7)	$12(10)$	0 (11)	40(11)
C(3)	51 (7)	56(8)	45(8)	20(12)	2(13)	64(12)
N(4)	42(5)	42(5)	43(6)	8(9)	0 (9)	50 (9)
C(5)	38(6)	$57(8)$	56(9)	9(11)	-2(14)	$51(12)$
C(6)	43(6)	49(7)	59(9)	10(11)	-8(14)	63(13)
C(7)	$37(6)$	53(7)	45(8)	0 (11)	7(13)	42(11)
C(8)	$44(6)$	40(6)	41(7)	0 (10)	$-5(11)$	48(11)
C(9)	$34(6)$	51(7)	40(7)	3(11)	5(12)	46(11)
$\mathrm{N}(10)$	42(5)	39(5)	45(6)	$20(9)$	$22(9)$	47(9)
$\mathrm{C}(11)$	$42(6)$	37(6)	42(7)	6(10)	17(11)	36(11)
$\mathrm{C}(12)$	43(7)	52(8)	72(10)	2(12)	18(14)	67(14)
C(13)	52(8)	85(12)	87(12)	30(17)	73(21)	86(17)
$\mathrm{C}(14)$	43(7)	98(13)	76(11)	$30(16)$	$85(21)$	63(15)
$\mathrm{C}(15)$	56(9)	87(11)	59(10)	47(17)	28(17)	64(16)
* In the form: $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+\right.\right.$ $\left.\left.U_{33}{ }^{2} c^{* 2}+2 U_{32} k l b^{*} c^{*}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}\right)\right]$.						

Figure 1 Molecular structure viewed along the a axis. Carbon atoms have numbers only; other elements have chemical symbols, and small circles represent hydrogen atom positions

The molecule consists of two identical halves related by a centre of symmetry located on the $\mathrm{N}(10)-\mathrm{N}\left(10^{\prime}\right)$ bond

Table 4

Least-squares planes given in the form $l X^{\prime}+m Y^{\prime}+$ $n Z^{\prime}=d$ where X^{\prime}, Y^{\prime}, and Z^{\prime} are co-ordinates in \AA. Deviations (\AA) of atoms from the planes are given in parentheses
Plane (1):* Azoimidazopyridinium ring system

$$
0.7385 X+0.3837 Y+0.5545 Z=8.00
$$

$[\mathrm{N}(10)-0.012, \mathrm{~N}(1) 0.086, \mathrm{C}(9) 0.081, \mathrm{C}(8) 0.082, \mathrm{C}(7) 0.017$,
$\mathrm{C}(6)-0.053, \mathrm{C}(5)-0.069, \mathrm{~N}(4) 0.001, \mathrm{C}(3)-0.020, \mathrm{C}(2) 0.022]$
Plane (2) : Phenyl ring

$$
-0.4219 X+0.4386 Y-0.7935 Z=-5.76
$$

$[\mathrm{C}(11) 0.003, \mathrm{C}(12)-0.022, \mathrm{C}(13) 0.031, \mathrm{C}(14)-0.020$, $\mathrm{C}(15) 0.000, \mathrm{C}(16) 0.009]$

* The centroid of this plane was the centre of symmetry at $1,0,1 / 2$. Atoms related to those given by inversion in this centre of symmetry were included in calculation of the plane equation and deviate from the plane by equal amounts, opposite in sign, from those given.
(Figure 1). The imidazo[1,2-a]pyridinium ring system is nearly planar, and both halves of the molecule connected by the 2 -tetrazene linkage deviate only slightly from planarity (Table 4). The atoms of the phenyl ring are reasonably close to the least-squares best plane (Table 4), but the molecule as a whole is nonplanar since the phenyl and the imidazo $[1,2-a]$ pyridinium rings are mutually inclined at an angle of $47 \cdot 5^{\circ}$ (Figure 1). The angle is large in comparison with those of $7 \cdot 6,10 \cdot 9$,
form with bond lengths $1 \cdot 39(1)$ and $1 \cdot 25(1) \AA$ for the N^{-N} $\mathrm{N}=\mathrm{N}$ bonds, and the bond angle $\mathrm{N}(1)-\mathrm{N}(10)-\mathrm{N}\left(10^{\prime}\right)$ is $111(1)^{\circ}$. Very few crystal structures having tetrazene chains have been reported but that of 1,4 -bis-(N-ethyl-1,2-dihydrobenzthiazol-2-ylidene)tetrazene ${ }^{16}$ has the chain in the trans-N-trans-trans- N form with $\mathrm{N}=\mathrm{N}$ $1 \cdot 257(4), \mathrm{N}-\mathrm{N} 1 \cdot 400(4) \AA$, and $\mathrm{N}-\mathrm{N}=\mathrm{N} 110 \cdot 6(3)^{\circ}$. None of these values differ markedly from those quoted for similar systems; the $\mathrm{N}=\mathrm{N}$ bond length in aromatic

Figure 2 The molecular packing viewed along the b axis
and 6.9° in the comparable s-triphenyltriazine, ${ }^{12}$ although the hydrocarbon systems biphenyl ${ }^{13}\left(0^{\circ}\right)$ and binaphthyl ${ }^{14}\left(68^{\circ}\right)$ show a wide variation.

The bond length of $1.47(2)$ for the $C(2)-C(11)$ bond agrees well with the corresponding value in s-triphenyltriazine ${ }^{12}[1 \cdot 475(7)]$ and in 2 -(1-imidazolin-2-yl)benzophenone ${ }^{15}[1 \cdot 49(3)]$ and is not dissimilar to the $1,1^{\prime}$-bond in biphenyl $[1 \cdot 497(2)]$ and binaphthyl $[1 \cdot 475(5) \AA]$.

The tetrazene chain $>\mathrm{N}-\mathrm{N}=\mathrm{N}-\mathrm{N}<$ is in the N -trans -N

[^2]azo-compounds ranges from 1.243 to $1.276 \AA^{17}$ and the $\mathrm{N}-\mathrm{N}=\mathrm{N}$ bond angles from 111 to $113^{\circ}{ }^{17,18}$ while the $\mathrm{N}-\mathrm{N}$ bond length in salicylaldehyde azine ${ }^{19}$ is $1 \cdot 407(4) \AA$. The fused pyridinium ring has bond lengths close to the average values quoted in ref. 20 , and to values recently reported for 8a-azonia-3,4-diazaphenanthrene cation ${ }^{21}$ and anhydro-7-methyl-1-phenyl-3-phenylimino-s-triazolo $[4,3-a]$ pyridinium z witterion. ${ }^{22}$ The imidazole ring
${ }^{17}$ H. Hope and D. Victor, Acta Cryst., 1969, B, 25, 1849, and references therein.
${ }_{18}$ C. J. Brown, Acta Cryst., 1966, 21, 146; 21, 153.
19 G. Arcovito, M. Bonamico, A. Domenicano, and A. Vaciago, J. Chem. Soc. (B), 1969, 733.
${ }_{20}$ Chem. Soc. Special Publ., No. 18, 1965.
${ }_{21}$ J. A. Elix, M. Sterns, W. S. Wilson, and R. N. Warrener, Chem. Comm., 1971, 426.
${ }_{22}$ M. W. Partridge, R. J. Grout, and T. J. King, Chem. Comm., 1971, 898.
has much more localised bonds $\mathrm{C}(9)-\mathrm{N}(4)$ and $\mathrm{C}(9)-\mathrm{N}(1)$ $[1 \cdot 38(2)$ and $1 \cdot 35(2) \AA]$ which are comparable with those in pyrrole ${ }^{20}(1.383 \AA) ; \quad \mathrm{C}(3)-\mathrm{N}(4)$ and $\mathrm{C}(2)-\mathrm{N}(1)$ [1-42(2)] are slightly longer as in imidazole ${ }^{23}$ itself while the $\mathrm{C}(2)-\mathrm{C}(3)$ bond is short $[1 \cdot 34(2) \AA]$ as in imidazole ($1.356 \AA$).

The closer approach of the anion to $N(1)$ than to $\mathrm{N}(4)[\mathrm{N}(1) \cdots \operatorname{Br} 3 \cdot 60$, and $\mathrm{N}(4) \cdots \operatorname{Br} 3 \cdot 78 \AA]$ suggests that the quaternary centre may be closer to $\mathrm{N}(1)$. The values agree well with that calculated ($3.43 \AA$) from the sum of the ionic radii ${ }_{\mathrm{N}}^{\mathrm{N}} \mathrm{H}_{2}(1.48)$ and $\mathrm{Br}^{-}(1.95 \AA) .{ }^{24}$

The packing diagram (Figure 2) shows that the anions
${ }^{23}$ S. Martinez-Carrera, Acta Cryst., 1966, 20, 783. See also F. P. van Ramoortere and F. P. Boer, J. Chem. Soc. (B), 1971, 976.
pack in layers parallel to b. The atoms of one layer have x co-ordinates close to $a / 2$, although they are not in contact [Table 2(d)]. Molecules at x, y, z and $x, \frac{1}{2}-y, z-\frac{1}{2}$ pack together with the plane of the phenyl ring at x, y, z nearly parallel with that of the heterocyclic rings of the other molecule. The anion position prevents coplanarity of the phenyl rings with the rest of the molecule, but it seems reasonable that the molecule would be nearly planar in solution.

We thank Dr. E. E. Glover and Mr. M. Yorke for gifts of material, and the Oxford University Computer Laboratory for computer time.
[2/1142 Received, 19th May, 1972]
${ }^{24}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960, pp. 514, 518.

[^0]: $+1 \AA=10^{-1} \mathrm{~nm}$.
 \ddagger Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20538 ($14 \mathrm{pp} ., 1$ microfiche). For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
 ${ }^{1}$ L. S. Goodman and A. Gilman, 'The Pharmacological Basis of Therapeutics,' 4th edn., Macmillan, New York, 1970, p. 605.
 ${ }^{2}$ D. S. Savage, A. F. Cameron, G. Ferguson, C. Hannaway, and I. R. Mackay, J. Chem. Soc. (B), 1971, 410.
 ${ }^{3}$ A. J. Everett, L. A. Lowe, and S. Wilkinson, Chem. Comm., 1970, 1021.

[^1]: ${ }^{4}$ W. Hespe and J. Wieriks, Biochem. Pharmacol., 1971, 20, 1213 (Chem. Abs., 75, 86,977g).
 ${ }_{5}^{5}$ F. G. Canepa, P. Pauling, and H. Sorum, Nature, 1966, 210, 907.
 ${ }^{6}$ M. Sundaralingam, Nature, 1968, 217, 35.
 ${ }^{2}$ C. C. J. Culvenor and N. S. Ham, Chem. Comm., 1966, 537.
 ${ }^{8}$ E. E. Glover and M. Yorke, J. Chem. Soc. (C), 1971, 3280.
 ${ }^{\circ}$ L. Bolger, R. T. Brittain, D. Jack, M. R. Jackson, L. E. Martin, J. Mills, D. Poynter, and M. B. Tyers, Nature, 1972, 238, 354.
 ${ }_{10}$ D. J. Pointer, J. B. Wilford, and D. C. Bishop, Nature, 1972, 239, 332.
 ${ }^{11}$ D. J. Watkin, Acta Cryst., 1972, A, 28, 33.

[^2]: 12 A. Damiani, E. Giglio, and A. Ripamonti, Acta Cryst., 1965, 19, 161.
 ${ }_{13}$ G. B. Robertson, Nature, 1961, 191, 593; 192, 1026.
 14 K. A. Kerr and J. M. Robertson, J. Chem. Soc. (B), 1969, 1146.
 ${ }_{15}$ J. S. McKechnie and Iain C. Paul, J. Chem. Soc. (B), 1968, 984.
 ${ }_{16}$ R. Allmann, Acta Cryst., 1967, 22, 246.

